Новые добавления:

Роль банков в рыночной экономике


Банки составляют неотъемлемую часть современного денежного хозяйства, их деятельность тесно связана с потребностями воспроизводства.

Принцип работы банкоматов


Банковские карты прочно входят в нашу жизнь, всё чаще и чаще заменяя бумажные банкноты.

Разделы

"Мягкие" вычисления. Нейронные сети и нечеткая логика

Материалы » Понятие прогноза и методы прогнозирования. Трейдинг » "Мягкие" вычисления. Нейронные сети и нечеткая логика

Страница 1

Рассмотрим некоторые методы "мягких" вычислений, не получившие пока широкого распространения в бизнесе. Алгоритмы и параметры этих методов значительно меньше детерминированы по сравнению с традиционными. Появление концепций "мягких" вычислений было вызвано попытками упрощенного моделирования интеллектуальных и природных процессов, которые во многом носят случайный характер.

Нейронные сети используют современное представление о строении и функционировании мозга. Считается, что мозг состоит из простых элементов - нейронов, соединенных между собой синапсами, через которые они обмениваются сигналами.

Основное преимущество нейронных сетей заключается в способности обучаться на примерах. В большинстве случаев обучение представляет собой процесс изменения весовых коэффициентов синапсов по определенному алгоритму. При этом, как правило, требуется много примеров и много циклов обучения. Здесь можно провести аналогию с рефлексами собаки Павлова, у которой слюноотделение по звонку тоже начало появляться не сразу. Отметим лишь, что самые сложные модели нейронных сетей на много порядков проще мозга собаки; и циклов обучения нужно значительно больше.

Применение нейронных сетей оправдано тогда, когда невозможно построить точную математическую модель исследуемого объекта или явления. Например, продажи в декабре, как правило, больше, чем в ноябре, но нет формулы, по которой можно посчитать, насколько они будут больше в этом году; для прогнозирования объема продаж можно обучить нейронную сеть на примерах предыдущих лет.

Среди недостатков нейронных сетей можно назвать: длительное время обучения, склонность к подстройке под обучающие данные и снижение обобщающих способностей с ростом времени обучения. Кроме того, невозможно объяснить, каким образом сеть приходит к тому или иному решению задачи, то есть нейронные сети являются системами категории "черный ящик", потому что функции нейронов и веса синапсов не имеют реальной интерпретации. Тем не менее, существует масса нейросетевых алгоритмов, в которых эти и другие недостатки так или иначе нивелированы.

В прогнозировании нейронные сети используются чаще всего по простейшей схеме: в качестве входных данных в сеть подается предварительно обработанная информация о значениях прогнозируемого параметра за несколько предыдущих периодов, на выходе сеть выдает прогноз на следующие периоды - как в вышеупомянутом примере с продажами. Существуют и менее тривиальные способы получения прогноза; нейронные сети - очень гибкий инструмент, поэтому существует множество конечных моделей самих сетей и вариантов их применения.

Еще один метод - генетические алгоритмы. В их основе лежит направленный случайный поиск, то есть попытка моделирования эволюционных процессов в природе. В базовом варианте генетические алгоритмы работают так:

1. Решение задачи представляется в виде хромосомы.

2. Создается случайный набор хромосом - это изначальное поколение решений.

3. Они обрабатываются специальными операторами репродукции и мутации.

4. Производится оценка решений и их селекция на основе функции пригодности.

5. Выводится новое поколение решений, и цикл повторяется.

В результате с каждой эпохой эволюции находятся более совершенные решения.

При использовании генетических алгоритмов аналитик не нуждается в априорной информации о природе исходных данных, об их структуре и т. д. Аналогия здесь прозрачна - цвет глаз, форма носа и густота волосяного покрова на ногах закодированы в наших генах одними и теми же нуклеотидами.

В прогнозировании генетические алгоритмы редко используются напрямую, так как сложно придумать критерий оценки прогноза, то есть критерий отбора решений, - при рождении невозможно определить, кем станет человек - космонавтом или алконавтом. Поэтому обычно генетические алгоритмы служат вспомогательным методом - например, при обучении нейронной сети с нестандартными активационными функциями, при которых невозможно применение градиентных алгоритмов. Здесь в качестве примера можно назвать MIP-сети, успешно прогнозирующие, казалось бы, случайные явления - число пятен на солнце и интенсивность лазера.

Страницы: 1 2

Рекомендуемая информация:

Проблемы правового регулирования банковских счетов
Рассматривая банковскую деятельность банковской системы Российской Федерации на предмет существования проблемы, не вольно задумываешься, можно ли найти «узкое место» в огромно законодательно урегулированном до основания массиве банковских ...

Совершенствование нормативно-правовой базы системы обязательного медицинского страхования
В 2009 году Федеральный фонд обязательного медицинского страхования осуществлял подготовку 12 законопроектов, 8 проектов постановлений и распоряжений Правительства Российской Федерации, более 300 приказов и распоряжений. Продолжалась под ...

Ликвидация или реорганизация кредитной организации
По действующему банковскому законодательству, ликвидация кредитной организации может быть добровольная или принудительная. Добровольная ликвидация кредитной организации осуществляется по инициативе учредителей (участников) кредитной орган ...

Copyright © 2024 - All Rights Reserved - www.guidebanking.ru